ВОПРОСЫ

к коллоквиуму по математическому анализу для студентов первого курса второго потока 2011-2012 учебный год

Лектор профессор В.А.ЗОРИЧ

ВВЕДЕНИЕ В АНАЛИЗ

(число, функция, предел)

- 1. Действительные числа. Ограниченные (сверху, снизу) числовые множества. Аксиома полноты и существование верхней (нижней) грани множества. Неограниченность множества натуральных чисел.
- **2.** Основные леммы, связанные с полнотой множества действительных чисел \mathbb{R} (вложенные отрезки, конечное покрытие, предельная точка).
- **3.** Предел последовательности и критерий Коши его существования. Критерий существования предела монотонной последовательности.
- **4.** Ряд и его сумма. Геометрическая прогрессия. Критерий Коши и необходимое условие сходимости ряда. Гармонический ряд. Абсолютная сходимость.
- **5.** Критерий сходимости ряда с неотрицательными членами. Теорема сравнения. Ряд $\zeta(s) = \sum_{n=1}^{\infty} n^{-s}$.
- **6.** Степенные разложения функций e^x , $\cos x$, $\sin x$, $(1+x)^{\alpha}$, $\ln(1+x)$. и области их сходимости (пока без доказательства) .
 - 7. Предел функции. Основные базы предельного перехода. Определе-

ние предела функции при произвольной базе и его расшифровка в конкретных случаях. Бесконечно малые функции и их свойства. Сравнение финального поведения функций, асимптотические формулы и основные операции с символами $o(\cdot)$, $O(\cdot)$.

- 8. Взаимосвязь предельного перехода с арифметическими операциями и отношением порядка в \mathbb{R} . Предел $\frac{\sin x}{x}$ при $x \to 0$.
- **9.** Предел композиции функций и монотонной функции. Предел $\left(1+\frac{1}{x}\right)^x$ при $x\to\infty$.
 - 10. Критерий Коши существования предела функции.
- 11. Непрерывность функции в точке. Локальные свойства непрерывных функций (локальная ограниченность, сохранение знака, арифметические операции, непрерывность композиции). Непрерывность многочлена, рациональной функции и тригонометрических функций.
- **12.** Глобальные свойства непрерывных функций (промежуточные значения, максимумы, равномерная непрерывность).
- **13.** Разрывы монотонной функции. Теорема об обратной функции. Непрерывность обратных тригонометрических функций.